The Whitworth Biology Department desires to broadly educate students in the fundamentals of biological processes and organismal diversity, to train students in the practice of science, and to instill an ethic of scientific responsibility in a complex world. Ultimately, this experience will inform their worldviews, their understanding of God, and their roles in society.

The learning outcomes of this major prepare students in the following areas:

Content
Graduates should have a broad base of factual information and principles in biology, including basic knowledge of all major organismic groups, biochemistry and metabolism, as well as the structural and functional components at all levels of biological organization. In addition, they should have reasonable depth in one subdiscipline of biology.

Synthesis: Graduates should be able to integrate and synthesize material from different subdisciplines of biology. This goes beyond simply having knowledge of different areas and should integrate subdisciplines of biology, relating biological processes at various levels of organization.

Communication
Biology graduates should be able to communicate with professional and lay audiences about biology. This skill includes the ability to communicate coherently in both oral and written forms, in plain language, about biological matters, and the ability to use discipline-specific formats, as appropriate, for professional audiences.

Critical Thinking
Graduates should be able to interpret biological research reports and journal articles and to analyze data. They should have the ability to design a useful, workable experiment to address a particular biological question and should be able to use problem-solving skills to modify a planned experimental approach.

Technical Proficiencies
Graduates should demonstrate basic laboratory “bench” skills common to the discipline (e.g., using a microscope, performing dilutions, operating a spectrophotometer); be familiar with field techniques such as sampling, habitat analysis, and collecting and preserving samples; follow and use experimental protocols, including recording and maintaining accurate data records; and understand the factors involved in maintaining and handling organisms – plants, animals and microbes – for study.

Research
The ability to conduct a research experiment incorporates many of the goals the faculty would like students to achieve – knowledge of content, synthesis, technical proficiencies and communication skills.
Requirements for a Biology Major, B.A. (45)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI 140</td>
<td>General Biology I: Genes, Cells and Evolution</td>
<td>4</td>
</tr>
<tr>
<td>BI 141</td>
<td>General Biology II: Organismal Diversity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>BI 311</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CH 401</td>
<td>Biochemistry I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approved upper-division biology electives*</td>
<td>24</td>
</tr>
<tr>
<td>(For teacher certification, 4-12 endorsement, BI 333, 363 and 345 must be included.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 161</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CH 161L</td>
<td>General Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>CH 181</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CH 271</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
</tbody>
</table>

(No more than four credits of internships, independent study or cooperative studies, no more than two credits of teaching assistantships, no more than four credits of BI 400 – Biological Research, and no more than 6 total credits for any combination of the above will apply to the degree program.)

* One writing-intensive biology course is required.

For teacher certification (4-12 endorsement), the following additional courses are also required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 256</td>
<td>Elementary Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>EDU 455W</td>
<td>Science in Secondary School</td>
<td>2</td>
</tr>
</tbody>
</table>

All endorsements subject to change; see School of Education for updated requirements.

Requirements for a Biology Major, B.S. (58-59)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI 140</td>
<td>General Biology I: Genes, Cells and Evolution</td>
<td>4</td>
</tr>
<tr>
<td>BI 141</td>
<td>General Biology II: Organismal Diversity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>BI 345</td>
<td>Ecology</td>
<td></td>
</tr>
<tr>
<td>BI 347</td>
<td>Global Change Ecology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>BI 363</td>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>BI 399</td>
<td>Molecular Genetics (*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>BI 323</td>
<td>Animal Physiology</td>
<td></td>
</tr>
<tr>
<td>BI 331</td>
<td>Plant Physiology</td>
<td></td>
</tr>
<tr>
<td>BI 447</td>
<td>Microbial Physiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>BI 354</td>
<td>Developmental Biology</td>
<td>3-4</td>
</tr>
<tr>
<td>BI 399</td>
<td>Molecular Genetics (*)</td>
<td></td>
</tr>
<tr>
<td>BI 412</td>
<td>Cell Physiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>BI 311</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CH 401</td>
<td>Biochemistry I</td>
<td></td>
</tr>
</tbody>
</table>

May be used to fulfill only one of the requirements, not both.*

Approved upper-division biology electives 12

(For teacher certification, 4-12 endorsement, BI 333, 363 and 345 must be included.)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 161</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CH 161L</td>
<td>General Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>CH 181</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>
CH 181L General Chemistry II Lab 1
CH 271 Organic Chemistry I 3
CH 271L Organic Chemistry I Lab 1
PS 151 General Physics I *** 3
PS 151L General Physics I Lab 1
PS 153 General Physics II *** 3
One of the following: 1
 PS 153L General Physics II Lab
 PS 154L Near Space Research Project

(No more than four credits of internships, independent study or cooperative studies, no more than two credits of teaching assistantships, no more than four credits of BI 400 – Biological Research, and no more than 6 total credits for any combination of the above will apply to the degree program.)

* If used to meet this requirement, cannot be used to meet the physiology or upper division elective requirements

** One writing-intensive biology course required.

*** PS 151 has a prerequisite of MA 171 (Calculus I) and PS 153 has a prerequisite of MA 172 (Calculus II).

For teacher certification (4-12 endorsement) the following courses are also required:

EDU 455W Science in Secondary School 2

All endorsements subject to change; see School of Education for updated requirements.

Requirements for a Biology Minor (20)

All endorsements subject to change; see School Education for updated requirements.

BI 140 General Biology I: Genes, Cells and Evolution 4
BI 141 General Biology II: Organismal Diversity 4
Approved upper-division biology electives 12

For Washington state endorsement in biology, BI 333, BI 363 and BI 345 must be included and the following additional courses are required:

* If used to meet this requirement, cannot be used to meet upper division elective requirement.

MA 256 Elementary Probability and Statistics 3
EDU 455W Science in Secondary School 2

Environmental Studies Minor (21-23)

Requirements for the Environmental Studies minor are listed in the Environmental Studies page (http://catalog.whitworth.edu/undergraduate/interdisciplinarystudies/environmental_studies).

Requirements for a Science Endorsement for Majors in Biology, Chemistry or Physics (32)

BI 140 General Biology I: Genes, Cells and Evolution 4
BI 141 General Biology II: Organismal Diversity 4
CH 161 General Chemistry I 3
CH 161L General Chemistry I Lab 1
One of the following 4
 CH 271 Organic Chemistry I
 CH 181 General Chemistry II
 PS 151 General Physics I ** 3
 PS 151L General Physics I Lab 1
 PS 153 General Physics II ** 3
 PS 153L General Physics II Lab 1
One of the following

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL 131</td>
<td>Understanding Earth</td>
<td>4</td>
</tr>
<tr>
<td>GL 139</td>
<td>Environmental Geology</td>
<td></td>
</tr>
<tr>
<td>NS 101</td>
<td>Earth and Sky</td>
<td></td>
</tr>
</tbody>
</table>

** Note: PS 151 has a prerequisite of MA 171 (Calculus I) and PS 153 has a prerequisite of MA 172 (Calculus II).

Au Sable Institute

The Au Sable Institute is a Christian environmental-stewardship institute whose mission is to work to bring healing and wholeness to the biosphere and the whole creation through academic programs, research projects and educational outreach. Whitworth is a participating member of the institute. Coursework taken through the institute can be counted as elective credit toward completion of a biology degree. The following courses (this is a partial list) are offered during the summer at the Au Sable Pacific Rim campus (on Puget Sound, near Seattle). Other courses are offered at the following campuses: Au Sable Great Lakes (in the Great Lakes Forest, Mich.), Au Sable East (on the Chesapeake Bay, in Virginia), Au Sable Africa (near Nairobi, Kenya), and Au Sable India (in Tamil Nadu, South India). A full listing of Au Sable courses is available in the biology department.

BIO 266 Natural History of the Pacific Northwest (3)

Biology and environment of plants and animals, nature of the physical environment, and biogeography of the Pacific Rim, from a stewardship perspective.

BIO 311 Field Botany (4)

Field identification and ecology of vascular plants as components of natural communities. Emphasis is placed upon on-site examination of plants in communities of the region. Ecological features such as community stratification and plant zonation along ecological gradients are examined. Prerequisite: one year of introductory biology or one semester of botany.

BIO 324 Natural Resources Practicum (4)

Environmental analysis and natural resources in relation to people and policy in the Pacific Rim. The focus is on local and regional environmental issues and policy in the context of environmental stewardship. It deals with the topics of old-growth forests, endangered species, fisheries issues, conservation of wild nature, international environmental issues in the Pacific Rim, land tenure and environmental stewardship.

BIO 359 Marine Mammals (4)

Biology, behavior, ecology, identification, and conservation of the marine mammals of the Pacific Rim. Work covers some of the major habitats in Puget Sound, with particular attention to the diving physiology, social behavior, and communications of whales and seals. Prerequisite: one year of general biology or one semester of zoology.

BIO 417 Marine Stewardship (4)

Stewardship of marine habitats and marine organisms in the context of environmental issues and policy. Includes developing an understanding of the structure, function, and conservation issues regarding biotic communities and ecosystems of coastal zone, estuaries, islands and the sea. Prerequisite: one year of general biology.

BIO 477 Plant Ecology (4)

Interrelationships between plants and their physical and biotic environments; plant-animal interactions; plant community composition and development; and modern methods or ordination and quantitative analysis with applications to conservation and stewardship. Prerequisite: one year of biology and one course in ecology.

BIO 499 Biological Research (1-6)

Participation in an ongoing research project of the institute, or a research project conducted concurrently with an advanced course. Prerequisite: permission of professor or concurrent enrollment in an advanced course.
Interdisciplinary Courses

STEM 115 Preparing for a STEM Career
1
Students will learn about the type of scientific work they would enjoy, explore scientific careers, hear guest speakers, and understand the preparation necessary at the undergraduate level in order to succeed in their chosen career. Spring semesters. Recommended standing: Freshman.

STEM 151 Seminar for Health Professions
1
A seminar to introduce students to the pre-health fields. Visiting speakers will represent medical, dental and veterinary fields. Course will also cover specifics of courses, majors, and other issues related to pre-health fields. Spring semester.

STEM 351 Preparatory Seminar: Health Professions
1
A cross-disciplinary course focusing on synthesis of general biology, general chemistry, general physics, organic chemistry, physiology, NMR and IR spectroscopy. Strategic course for learning to apply introductory science/math knowledge to questions involving higher-order content. Intended for students planning to take the Medical College Admissions Test, Dental Aptitude Test, or veterinary-school entrance exams. Intended primarily for students in their junior or senior year. Students will prepare for health professions both in terms of the entrance exams and by researching each school's focus and prerequisites. Prerequisites: BI 140, BI 141, CH 161, CH 181, CH 271, CH 278, PS 151, and PS 153.

Courses

BI 102 Introductory Biology
3
Contemporary understanding of the basic organization and function of biological systems and the nature and interdependence of living organisms. Emphasis on cell structure, the diversity of organisms, and physiology. Lab. Meets natural science requirement. Also listed as ENS 102.

BI 102L Lab: Introductory Biology
0

BI 104 Human Ecology
3
Nature, dynamics and interdependence of ecosystems in relation to the human biological and cultural niche. The ecological principles of energy flow, nutrient cycling, succession, limiting factors, species diversity and symbioses are utilized to diagnose global environmental problems such as global warming, acid precipitation, ozone depletion, desertification, species extinction, deforestation and resource depletion. No lab. For non-science majors. Periodic offering.

BI 105 Plants in Culture
3
Basic structures and life processes in plants. Survey of historical and contemporary uses of plants. Focus on ways in which human life is physically dependent on plants, and on the many ways in which human cultures reflect the specific plants available to them. No lab. For non-science majors. Meets natural science requirement. Also listed as ENS 105. Periodic offering.

BI 107 Infectious Diseases
3
Introduction to the structure, function and diversity of microorganisms that cause human disease. Microbial infections that complicate exposure to vacation climates, pets, recreational activities and exotic cuisine will be emphasized. For non-science majors. Meets natural science requirement. Periodic offering.

BI 108 Biology of Sex & Gender
3
Investigation of the biological basis of gender variation, sexual identity, reproduction and sexual development. Emphasis given to the developmental biology, neurobiology, endocrinology and physiology underlying human male and female form and function. No lab. For non-science majors. Meets natural science general requirement. Also listed as WGS 108. Periodic Jan Term offering.

BI 110 Introduction to Human Genetics
3
Mechanisms of inheritance which account for the vast genetic diversity within the human species, hereditary disease and genetic therapy, genetic technologies. No lab. For non-science majors. Periodic offering. Meets natural science requirement.
BI 111 Marine Biology
Introduction to life in the sea. Emphasis on the diversity of marine organisms and adaptations to marine habitats, marine ecosystems and food webs. No lab. For non-science majors. Meets natural science requirement. Also listed as ENS 111. Jan Term. Periodic offering.

BI 112 Biology of Northwest Agriculture
The biological concepts that underlie current topics in agriculture of the Northwest will be discussed. Popular views of the biological factors thought to play a role in agriculturally related issues will be compared to established hypothesis and theories. Meets natural science requirement. Jan Term. Periodic offering.

BI 113 Biological Evolution
Introduces major principles of evolutionary biology, including concepts of evolutionary genetics, adaption and natural selection, and speciation and macroevolution. Contemporary controversies surrounding the teaching of evolution are also discussed. No lab. For non-science majors. Meets natural science requirement. Jan Term. Periodic offering.

BI 114H Resurrection Science
This course will cover basic topics such as: how the genome (DNA) instructs cells to become a living organism, genome editing (mutations), de-extinction (bringing back extinct species), as well as the critical connection between our DNA and our health. We will also examine the important nature of communicating science in a digital world full of a wide variety of audiences. An important aspect of the course will address the ethical decisions we face regarding the use of genome editing technologies and how they should be regulated. These decisions will be especially examined within the Christian, faith-based framework from which many students on campus come from. However, we will make sure to take time to ensure that non-Christian viewpoints and heard as well.

BI 115 Conservation & Human Rights
Conservation of natural resources occurs in cultural contexts. Overview of the science behind conservation efforts. Consideration of costs and benefits for particular human groups.

BI 120 Introduction to Environmental Science
Overview of how science informs our approach to environmental concerns, with application to specific current environmental challenges, including water resources, energy, land use, biodiversity, and global change. Also discussed how faith integrates with science to shape our approach to the environment. Meets natural science requirement. Also listed as ENS 120. Spring semester.

BI 120H Introduction to Environmental Science
Overview of how science informs our approach to environmental concerns, with application to specific current environmental challenges, including water resources, energy, land use, biodiversity, and global change. Also discussed how faith integrates with science to shape our approach to the environment.

BI 140 General Biology I: Genes, Cells and Evolution
Introduces cells as the structural and functional units of living systems, emphasizing molecular characteristics of cellular and biochemical processes in the context of cellular and subcellular organization. Topics covered include basic biological chemistry, cell and virus structure, energy utilization and metabolism, viral and cellular reproduction, genetics, evolutionary theory, systematics and phylogeny. In the laboratory portion of the course, students investigate cell structure, function, and genetics. This course is part of the introductory sequence of courses designed to assist students in developing critical reasoning skills and the necessary conceptual framework for advanced study in biology. Meets natural science requirement. Co-requisite: BI 140L. Fall semester.

BI 140L General Biology I: Genes, Cells and Evolution Lab
BI 141 General Biology II: Organismal Diversity
Evolutionary origin, taxonomic classification and unique anatomical, physiological and behavioral adaptations of protists, fungi, green plants, and animals. Lab. Prerequisite: BI 140. Lab BI 141L included. Spring semester.

BI 141L General Biology II: Organismal Diversity Lab

BI 303 Plant Taxonomy
History, theories and methods of classification, identification, nomenclature and description. Role of taxonomy as a biological discipline. Types of taxonomic evidence. Descriptive terminology. Survey of selected families. Lab focuses on use and construction of diagnostic keys, identification of local flora, preparation of field data records and herbarium specimens. Lab. Prerequisites: BI 140 and BI 141. Also listed as BI 303W and ENS 303. Spring semester, even years.

BI 303L Lab: Plant Taxonomy

BI 304 Ecological Measures
This course will explore a number of fields of ecological research and management, focusing first on the reasons for measuring ecosystem attributes pertinent to each field, as well as covering sampling design, analysis, and common measurement techniques. Three required Saturday field trips. Prerequisite: BI 345. Also listed as BI 304W and ENS 304. Fall semester.

BI 304L Lab: Ecological Measures
See BI-304.

BI 305 Landscape Ecology
Landscape ecology is the study of the causes and consequences of landscape-scale pattern and process. Topics will include ecological scale, restoration ecology, disturbance ecology, ecological modeling, and geospatial ecological techniques. Includes 1 Saturday field trip. Prerequisite: BI 345. Also listed as BI 305W and ENS 305. Spring semester. Periodic offering.

BI 305L Lab: Landscape Ecology

BI 306 Medical Microbiology
Microorganisms, especially bacteria and viruses of medical importance. Basic structure and physiology of microorganisms, principles and control of growth, antibiotics, a survey of infectious disease. Prerequisite: CH 102. Spring semester. For nursing majors only or by instructor permission.

BI 308 Biology of HIV/AIDS
Explores the biological, socioeconomic, political and religious factors that influence the transmission, life cycle, pathogenesis and treatment of the human immunodeficiency virus (HIV). No lab. Prerequisites: BI 140, BI 141 and BI 311. Jan Term, periodic offering.

BI 311 General Biochemistry
General biochemistry course for biology majors. Focus on biopolymers, energy flow and chemical processes in living systems. No lab. Prerequisites: BI 140 & BI 141, CH 161, CH 181 & CH 271. Every semester.

BI 312 Vocational Preparation for Biology Grad School
This course focuses on how to apply successfully to a biology graduate program suited to the students future vocational goals. Improving skills that engage primary literature is also addressed. Various speakers will share information about graduate programs and their personal professional trajectories.
BI 321 Invertebrate Biology/Symbiosis 3
Invertebrate Biology takes a thematic, non-phylogenetic approach to invertebrate animals, the various phenomena they exhibit, and appreciation for the diversity of solutions they employ in the common challenges of life. Symbiotic biology examines the major categories of interdependent associations involving partners in all five kingdoms. Mechanisms by which symbioses are established, maintained and propagated, and the ecological and evolutionary significance of such relationships are examined. Prerequisites: BI 140 and BI 141. Periodic Offering.

BI 323 Animal Physiology 4
Anatomical, physiological and behavioral adaptations of animals to their particular habitats. Lectures focus on respiration in air and water, circulation, metabolism, temperature limits and thermoregulation, osmotic adaptations and excretion, and amoeboid, flagellar, ciliary, and muscular movement. Lab. Prerequisites: BI 140, BI 141, CH 271 and BI 311 or CH 401. Also listed as BI 323W. Junior standing. Fall semester.

BI 323L Lab: Animal Physiology 0

BI 324 Animal Behavior 4
The study of the mechanisms and evolution of animal behavior. Topics include methods of observation and quantification of behavior, natural selection, sexual selection, evolution of animal choice, and the biological basis of all social interactions. Lab. Prerequisites: BI 140 and BI 141. Also listed as ENS 324. Also listed as BI 324W. Fall semester, odd years.

BI 324L Lab: Animal Behavior 0

BI 331 Plant Physiology 4
Water relations, mineral absorption and nutrition, translocation mechanisms, respiration, photosynthesis, nitrogen metabolism, growth regulators, photomorphogenesis, senescence and stress physiology. Focus on vascular plants. Lab emphasizes whole organism responses. Prerequisites: BI 140, BI 141, BI 311, and CH 271. Also listed as BI 331W and ENS 331. Spring semester, odd years.

BI 331L Plant Physiology Lab 0

BI 333 Evolutionary Biology 3
Study of the evolutionary paradigm that unifies the science of biology. Origin, refinement and the contemporary form of evolutionary theory, with the objective of understanding its use in organizing the data, ideas and research of the biological sciences. The study will critique some of the popular caricatures of the evolutionary paradigm. No lab. Prerequisites: BI 140 and BI 141; junior standing recommended. Also listed as BI 333W. Spring semester, even years.

BI 339 Intro to Field Studies 1
Theoretical and logistical preparation for the field study tour the following Jan Term. Activities will prepare students for field work at an off campus location. Permission of instructor only. Limited enrollment. Prerequisites: BI 140, BI 141 and BI 345. Fall semester.

BI 341 Central American Field Ecology 4
Field-based course that provides a unique context to perform student designed research in three Central American ecosystems in Costa Rica. Course will focus on field data collection, analysis, and reporting for ecological systems. Requires extensive time outdoors in conditions ranging from wet and cold to hot and dry. Also listed as ENS 341.

BI 345 Ecology 4
Fundamental relationships and processes by which organisms interact with each other and their physical environment. Focus on physiological adaptations, population growth and regulation, community and ecosystem structure and function, and biogeography. Lab. Prerequisites: BI 140 and BI 141. Also listed as BI 345W and ENS 345. Spring semester.

BI 345L Lab: Ecology 0
BI 346 Field Parasitology
Field-based course exploring the interaction between parasites and hosts. Parasites in Northeastern Washington will be studied in relation to prevalence, location and affect upon the host. Organisms in the animal, plant, fungi, and protista kingdoms will be considered. Lab. Prerequisites: BI 140, BI 141, BI 345, and BI 323 or BI 331. By permission of instructor. Periodic Jan Term offering.

BI 347 Global Change Ecology
This course will explore global-scale changes and the interplay of ecosystems with these changes. Topics will explore how changes such as global warming, invasive species and land degradation influence global nutrient and energy cycling, inter- and intra-species interactions, and feedbacks in the earth system.

BI 350 Comparative Vertebrate Anatomy
Variations of the basic vertebrate theme that enable the species within the group to exploit the particular environment. Evolutionary development of major organ systems within vertebrate classes. Anatomical features of carnivore, herbivore and omnivore mammals will be discussed in detail. Lab. Prerequisites: BI 140 and BI 141. Also listed as BI 350W. Spring semester.

BI 350L Lab: Comparative Vertebrate Anatomy
Lab section for BI 350.

BI 354 Developmental Biology
Developmental processes and patterns of form and function in multicellular organisms, particularly animals. Emphasis on molecular, cellular and environmental factors regulating gene activity, cellular differentiation, and pattern formation during various developmental sequences. Descriptive, comparative and experimental lab activities focus on chordate embryology, specifically gametogenesis, fertilization, cleavage, gastrulation and organogenesis. Prerequisites: BI 140, BI 141 and BI 311 or CH 401; junior standing. Also listed as BI 354W. Fall semester. Annually.

BI 354L Lab: Developmental Biology

BI 355 Introduction to Genomics
This course will cover how we can use information from the genome, including organization and output, to analyze varying biological conditions, such as different states of development or health. The focus will be on learning about the wide array of techniques that use large data sets collected in vivo (live organism) and analyze them in silico (computer based algorithms). Analyses will be accomplished utilizing various online databases and tools to demonstrate the power within the genomics toolbox. Spring term, even years.

BI 363 Genetics
Mechanisms that contribute to and maintain intraspecific diversity: meiosis, allelic segregation, chromosomal assortment, dominance-recessive allelic relationships, hybridization, multiple alleles, epistasis, linkage and recombination, polygenic inheritance and mutation. Population genetics, especially the factors that alter relative frequencies of gene pool alleles. Genetic molecules and the processes by which they are replicated, mutated and expressed. Human genetic diseases. Lab. Prerequisites: BI 140, BI 141 and CH 271. Also listed as BI 363W. Fall semester.

BI 363L Lab: Genetics
Corequisite course: BI 363.

BI 365 Ecological Developmental Biology
Developmental processes as they are influenced by their environmental context including: predators, competitors, toxic compounds, changes in temperature and humidity, availability of nutritional resources, and other factors. The influence of epigenetics and evolutionary adaptation on developmental plasticity will also be examined. Additionally, the course will explore insights gained into human health and disease by examining topics mentioned above. Spring term, odd years.
<table>
<thead>
<tr>
<th>BI 369 Mycology</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspects of growth, metabolism, genetics and environmental modification peculiar to fungi. Distinguishing characteristics of major fungal groups. Lab. Prerequisites: BI 140, BI 141 and BI 311. Also listed as BI 369W and ENS 369.</td>
<td></td>
</tr>
</tbody>
</table>

| BI 369L Lab: Mycology | 0 |

<table>
<thead>
<tr>
<th>BI 370 Bacterial Pathogenesis</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course uses the latest experimental research to help students explore the mechanisms by which bacterial pathogens cause infection and disease in humans. The focus is on the growing understanding of the underlying similarities among pathogens and their mechanisms of pathogenesis. Students will learn how to read and interpret the primary scientific literature in bacterial pathogenesis. They will also learn microbiological laboratory techniques, and apply them in experimental problems. Prerequisites: BI 140, BI 141, BI 311 or CH 401. Also listed as BI 370W. Fall.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BI 399 Molecular Genetics</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contemporary molecular genetics: the organization, storage, retrieval and transfer of genetic information at the molecular level. Topics include the chemical and physical properties of nucleic acids, DNA replication, transcription, translation, mutagenesis, DNA repair, gene regulation and expression, techniques of experimental molecular biology and applications to biotechnology. Viral, prokaryotic, and eukaryotic systems examined. Prerequisites: BI 140, BI 141, and BI 311 or CH 401; junior standing. Also listed as BI 399W. Spring semester.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BI 399L Molecular Genetics Lab</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techniques for manipulation and study of DNA. Co-requisite: BI 399 or BI 399W.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BI 400 Biological Research</th>
<th>1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual student experimental-laboratory or field-research projects. Projects to be approved by department faculty. Prerequisite: BI 140, BI 141 and BI 311 and upper-division coursework in biology and other sciences pertinent to research project. Fall and spring semesters, Jan Term and summer.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BI 401 Seminar</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation and discussion of results of literature and laboratory investigations of biological phenomena. Departmental sessions. Prerequisites: 12 credits of 300- or 400- level biology courses. Periodic offering.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BI 404 Neurophysiology</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural and functional aspects of the central nervous system of mammals. Basic neuroanatomy, nerve transmission, synaptic function and neuronal control mechanisms. Current research and contemporary topics related to central nervous system function will be investigated. Prerequisite: BI 140, BI 141, and BI 311 or CH 401. Also listed as BI 404W. Spring semester, odd years.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BI 412 Cell Physiology</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell ultrastructure and molecular aspects of cell function. Emphasis on structural and molecular organization of eukaryotic cells and organelles, the regulation and compartmentalization of metabolic activities, cell cycles and reproduction, cellular differentiation and cell interactions. No lab. Prerequisites: BI 140, BI 141, and BI 230, BI 311 or CH 401. Junior standing. Also listed as BI 412W. Spring semester, even years.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BI 447 Microbial Physiology</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrastructure, metabolic variations, genetics, ecology and evolution of prokaryotic organisms. Emphasis on the importance of bacteria in the study of various biological processes, as well as on the practical and technological importance and ecological significance of bacteria. Laboratory focus on techniques for isolating, culturing, and identifying bacteria, and on characterizing and studying their genetic and metabolic processes. Prerequisites: BI 140, BI 141 and BI 311. Also listed as BI 447W.</td>
<td></td>
</tr>
</tbody>
</table>

| BI 447L Lab: Microbial Physiology | 0 |
BI 448 Environmental Microbiology 4

This course will examine the applied effects of microorganisms on the environment and on human activity, health and welfare. The role of microbes in municipal waste treatment, bioremediation and agriculture will be discussed. The laboratory component of the course will explore the detection and quantitation of microbial activity, including cultural, microscopic, physiological and molecular approaches. Prerequisites: BI 140, BI 141 and CH 271. Also listed as BI 448W and ENS 448. Spring semester, odd years.

BI 448L Lab: Environmental Microbiology 0
This document should contain certain fonts with restrictive licenses. For this draft, substitutions were made using less legally restrictive fonts. Specifically:

Times was used instead of Adobe Garamond Pro.

The editor may contact Leepfrog for a draft with the correct fonts in place.